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An Equation of State for Pure Fluids 
Describing the Critical Region 

T. Kraska 1"2 and U.  K. De i ters  I 

Rec.eired Septemher I. 1993 

Density fluctuations of a pure fluid are treated by a cell model, in which the 
fluid is divided into cells containing different numbers of particles. A probability 
function for the particle number is derived. This function, after convolution with 
a classical (mean field) equation of state, leads to an improved equation of state 
which is valid in the critical region. The equation of state is analytical, hence not 
exact in the immediate vicinity of the critical point. As an example, the convolu- 
tion is applied to the Carnahan-Starling/van der Waals equation of state; the 
resulting equation of state is used to correlate thermodynamic properties of 
several simple fluids. 
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i. I N T R O D U C T I O N  

One of the most difficult problems in the thermodynamics  of fluids is the 
description of the critical region. In this region, all analytical mean field 
equat ions  of state exhibit a systematic deviation from the observed behavior. 
In principle, the thermodynamic  properties of fluids in the vicinity of the 
critical point  can be described by so-called power laws. The exponents  in 
these power laws, the so-called critical exponents,  are predicted incorrectly 
by all classical equat ions  of state, which are expandable into Taylor  series 
at the critical point. Correct values of the critical exponents can be obtained 
from renormal iza t ion  theory [1] .  Even with these critical exponents,  how- 
ever, the power laws describe the real fluid behavior only in a short range 
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around the critical point. Therefore, in the previous two decades several 
theories were developed, with the aim of describing the classical behavior far 
from the critical point as well as the nonclassical behavior near the critical 
point with only one equation of state. 

One of the first attempts to accomplish a "crossover" from classical to 
nonclassical behavior was the introduction of the switch function by 
Chapela and Rowlinson [2]. With this function, a mathematical combina- 
tion of an analytical and a nonanalytical equation of state is made: The 
switch function runs from zero to one while the model turns from non- 
classical to classical behavior and determines the weight of the classical 
contribution to the total equation of state. As shown by Wooiley [3],  the 
inflection point of the switch function gives rise to artificial extrema of 
derived thermodynamic functions, which are at variance with experiment. 

Another mathematical method of crossover was proposed by Fox [4].  
He transformed the density and the temperature into a coordinate system 
with a nonequidistant axis scaling. This axis distortion increases with 
decreasing distance from the critical point. The transformation is weighted 
with a so-called damping function. Its argument is another function that 
describes the distance to the critical point. 

Another approach, with a more physically rigid foundation, was 
developed by Sengers and his co-workers [5, 6]. In this model, the 
diverging wave length of the fluctuation at the critical point is limited by 
a ultraviolet cutoff parameter. This theory is based on the classical Landau 
expansion around the critical point, whose coordinates are transformed 
with functions depending on a crossover function. The more terms of the 
Landau expansion are used, the more of the mean field region can be 
described. The transition to the perfect gas or the dense liquid regime is still 
difficult. 

In this work, an equation of state is proposed which is based on the 
virial expansion, a Taylor expansion around zero density. Because this 
series converges very rapidly, only a few terms are needed. This theory is 
able to describe fluctuations, which are significant both in the near-critical 
region and in a part of the classical region. 

2. T H E  CELL M O D E L  

In this section it is shown how fluctuation can be considered in the 
partition function. The influence of the density fluctuations on the partition 
function is described by a cell model. The use of the mean field approxima- 
tion with a r 6 attraction potential, together with the approximation that 
the free volume is the difference between the total volume and the 
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covolume of all molecules, leads to the partition function underlying the 
van der Waals equation of state: 

Z N = A 3N ( V - -  N h )  'v [ a N p ' ~  
N! exp ~ )  (1) 

A = - N k B T I n  Z~, {2) 

_ = T ( O l n Z , v ~  _ R T  a {3} 
( O A )  - N k n  \ ? V m  J r  V m - h  V m p = \ O V ]  T 

Here p denotes the inverse volume, !/I/" , N the particle number, Zx  the 
canonical partition function, and A the thermal de Broglie wavelength. 

This partition function represents a mean field of interaction over the 
whole fluid with N molecules. In the next step, the fluid is divided into M 
equal-sized cells with the volume V z. The number of particles K in each of 
these cells can be different. The mean field approximation is applied to 
every single cell. The resulting partition function is 

Z A " = m 3K ( V z  - K h  ) K ( a K p  ~ 
K! exp \ k ~  T ]  (4) 

with 

V K K M  
Vz = ~ and P = V z V/. 

Because the cells are independent for large systems, with only the restric- 
tion 5" K =  N, the partition function of the whole fluid is the product of 
the cell partition functions weighted with a density distribution o)(K). 
Hence the introduction of the cells represents a step beyond the mean field 
approximation in the transition from the micropartition function to the 
system partition function. The physical reason of this model is that the cell 
size corresponds to the correlation length [7, 8] of the density fluctuations. 

N 

z(i) "-* -'* Z x  = I-I zli)  
MFA ,= i 

single-particle p.f. system partition function 
K /'(m~ L 

:(i) --* ZK = l--I z(i) --* ZN= I-I Z'~: 'h' 
CMFA i= t A'~o 

single-particle p.f. cell partition function system partition function 

where MFA is the transition with the normal mean field approximation 
and CMFA the transition with the cell mean field approximation. 
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This model describes a mean fluctuation which increases with the cell 
size. With Zx  of the cell model, the equation of state can be derived. 
If the number of cells is large, it is possible to change the discrete density 
distribution (o(K) into a continuous density distribution (b(p) and to 
replace the summation by an integration. 

. 4 = - k B T l n Z x  

\ C V,,, / r 

, ] I/p'-h ap'2 dp' 

5) 

6) 

Comparison of Eqs. (5) and [6) with the van der Waals equation of 
state leads to a general prescription.for deriving an equation of state that 
includes fluctuations: 

(P ) = ~ ,'b(p) p(p) dp (7) 
j" d)(p) dp 

3. MATHEMATICAL FORMALISM 

Now we have to find a mathematical formalism that makes it possible 
to calculate a fluctuation term for every mean field equation of state. First, 
the basic classical equation has to be expanded into a Taylor series with 
respect to the reduced density ~ = hp. The coefficients of this expansion are 
the ./i, : 

t 

p=p(~ . ,T )=  Z .11,~" with ~=  h__ (8) 
t t  = [ )  V I I I  

Then the powers of the reduced density ~" have to be convoluted, as 
written in Eqs. (5) and (6), with the continuous density distribution (b{~). 

• + • 

( p ) =  Z .11,I,, with l , , = f  {9) 
t l  = t )  " 

If a Gaussian distribution function is substituted for the density 
distribution (7)(~.), the following integrals I,, are obtained: 

f + , , 
I, = ¢" ~ exp d~ (10) 

• x/'2n a 2a2 J " 

The analytical solutions of these integrals can be calculated with the 
following recursive series [9].  

" ( : )  , ,:2,4,6 .... 
I , , = - ~ "  ( - l l )  i I,, I + ~ i = J  (11) 

, : l  (0 ,  n = 3 , 5 , 7  .... 



An Equation of State for Pure Fluids 265 

T o  s e p a r a t e  the m e a n  field te rm and  the f luc tua t ion  term.  some  so lu t ions  
of  the 1,, have  to be ca lcu la ted .  The  first n ine  m o m e n t s  are  l isted be low:  

/41~--" 1 

I~ = I t  

12 = 112 + 0--" 

13 = i v~ + 3110- 2 

14 = 1l 4 + 61t2cr 2 + 3a a 

15 = i 15 + 101t3a 2 + 15110- 4 

16 = 1l 6 + 151140 -2 + 451120- 4 + 150" ~' 

17 = ,tt 7 + 211 t sa  2 + 1051130- .* + I05110- ~' 

18 = 118 + 281160- 2 + 21011.*0- 4 + 4201120- 6 + 1050- s 

( 1 2 )  

j k I 

0 t ~1) • ~. (.1. + /2a" 

I ~(.1~ + 3/:,0.-" 

2 ,.--2(.[- + 6/~ or-" 

3 "'  i ~ (.1, + 1Ol:,a" 

4 -4 (./, + 15/i 0.-" 
<p> = 

5 "'  i g-(/~ + 21fTa-" 

6 ,~"(/~, + 28I;,": 

7 ,;'7(.I7 + . . .  

8 "~8 ,,. .Is + ' 

or,  af ter  fu r ther  r e a r r a n g e m e n t ,  

( p )  = ~. B * ¢  
i= o 

2 3 

+ 3I~0. a + 15.L,a" 

+ 15.l~a 4 + 105.I7a" 

+ 45.11, 0.4 + 420Is a" 

+ 105170 .4 + . .  

+ 2101~0.'* + ." 

-{- . . .  

4 5 

+ 105.l~cr '~ + . . .  ) 

+ . . .  ) 

+ . . .  ) 

(13) 

T h e  s econd  in tegra l  1~ is equa l  to the c o n v o l u t e d  va lue  of  the dens i ty  
l j  = < ~ ) = 1 l .  The re fo re  the p a r a m e t e r  it of  the G a u s s i a n  d i s t r i b u t i o n  is 
equa l  to  the m e a s u r e d  densi ty .  T o  s impl i fy  the fo rmulas ,  ( ~ ) ,  and  hence 
every  I~, is r ep laced  by ~. Inse r t ion  of these I,, in to  Eq. (9) and  r ea r r ange -  
men t  wi th  respect  to powers  of dens i ty  yields  the fo l lowing  form of  the 
to ta l  e q u a t i o n  of  s ta te :  
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where the coefficients B~' can be expressed as .I 

B * = L +  Z " 2 ./ * a .//+_'k I-I (2i-- 1) (14) 
k = l  i = 1  

With 

k (2k)! 
]-[ 12i- l ) -  k! 2 k 

i = 1  

B* =.I;. + Z "k " (2k+j)! 
/ a-'//+2~ k ! j !  2 k 

k = l  

(]5) 

and the separation of B* into a mean field term .[) and a fluctuation 
term B, 

B* = £ +  B, (16) 

one finally obtains 

( P ) = E f ,  ¢ ' / +  Z E a-~/+ek'k" ( 2 k + j ) ! / 2  k . 
/ /=o k = I /"! J! 

p(¢,T) + Y~BA ~ 
j = O  

m c a n  f ield t e r m  

f l u c t u a t i o n  t e rn )  

(17) 

In this equation, the first term refers to the mean field fluid and can 
be identified with the basic equation of state. The remaining term 
represents the fluctuations. 

4. T H E  MEASURE OF F L U C T U A T I O N  

The last unknown variable is a, the width of the density distribution, 
which is a measure of the fluctuation. Its density dependence was deter- 
mined by fitting a to density and pressure values along the critical 
isotherm. Critical isotherm data were obtained in three ways, to study the 
influence of the critical exponents. 

(i) We used the power law 

p = p c ( l + k ~ A ~ l A ~ l  '~ ' )  (18) 
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with 

zl~= 
~c 

with a classical exponent (6 = 3.0). 

(ii) We used the same power law, Eq.(18), with a nonclassical 
(6 = 4.76) exponent. 

(iii) We used experimental data for carbon dioxide along the critical 
isotherm. 

The critical isotherm data thus obtained were then used with Eq. (17) to 
calculate a as a function of the density. We refer to the a function obtained 
from the power law Eq. (18) with ~ = 3.0 as classical, to that obtained from 
the same power law with 6=4 .76  as nonclassical, and to that obtained 
from carbon dioxide data as experimental. In Fig. 1 the results of these 
three fits are shown. It is obvious that the nonclassical curve clings to the 
curve of CO_, in the vicinity of the critical point. At zero density, the classi- 
cal curve and the CO_, curve meet each other at the origin. It is unexpected 
that the nonclassical a curve does not run to the origin, though the critical 
amplitude k¢ of the power law has been set to one and therefore Eq. (18) 

i i i i 

t 2  

. .  i ~ " 

0.I / I , ~ 

0 t s i 

o.2'o14 o16 018 
Fig. i. Crossover  from classical to non- 
classical behavior in the fluctuation distribu- 
tion width a. ( ) Calculated from 
experimental data for carbon dioxide; ( ...... ) 
calculated with the classical power law; 
( . . . .  ) calculated with the nonclassical 
power law. 
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yields the pressure zero at zero density. Hence the "exper imenta l"  a curve 
of CO~ represents  the t ransi t ion from the classical to the nonclassical  
behavior.  The increase in the CO2 curve at a high densi ty is an effect of the 
critical ampl i tude  of C O , .  As shown in Fig. 2, it depends  only on k s 
whether  a decreases or  increases at the liquid side. 

The nonclassical  cr curve cannot  be represented analyt ica l ly :  An 
analyt ical  a curve inevi tably leads to an analyt ical  equa t ion  of state, which 
is not able to describe the real behavior  of a real fluid at its crit ical point.  
Nevertheless,  an analyt ica l  po lynomia l  can be used to a p p r o x i m a t e  the a 
function of C O ,  with a high degree of accuracy.  With  this po lynomia l  one 
can describe the classical f luctuations,  which are significant over a wide 
range of the state variables.  It is also .possible to describe the correct  
behavior  very close to the critical point  as shown below. The po lynomia l  
must meet the following condi t ions .  

( i )  At the crit ical point  a(,..-') has a max imum with the value try. 

(ii) In the perfect gas limit, cr must  be zero. 

a = ~ .Ii, + . I ,  Y + ~ . . 4 ,  .~"~ ~ with v -- -:------ 
i = 1  B :  

¢rcB~ 
./i,=-~-_ and ./', = - ...~ (19) 

Be(CO_,) -- 1.0 

C! 

0,1 

a) b) 

o ~ "  " " "'. 2.0 
,,x ',,~,, .,~ 

1 , 1  ," ",. " ,  

o.1 
i 

• q . J , i , i 1 

0 0.2 0.4 06  08  

ill~ '' 

10 

014 016 08 

2.0 

Fig. 2. The effect of variation of the critical amplitude k: on the density dependence of a. 
Curves calculated from the power law given by Eq. (18}: (a)using the classical value for 6: 
(b) using the nonclassical value for ,'i. 
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This definition of y makes it possible to apply the cr function, which had 
originally been fitted for COz only, to other substances by merely changing 
the parameter  Be. The parameters Ai (see Table I) are also useful for other 
substances whose critical compressibility factor Z~ is close to the value of 
CO, .  For substances with a very low Z~, such as water, a different set of 
A, has to be used. The temperature dependence of the fluctuations can be 
described with a Gaussian. The complete function a(¢, T) is the product of 
the two terms [a(~) is given by Eq. (19)]: 

a(~. T) = a(~) cr(T) (20) 

(_ (AT~'-~ with A T = T - T "  
a ( T ) =  exp \ \ BrJ J T¢ (21) 

5. T H E  E Q U A T I O N  OF STATE 

The CMFA fluctuation terms described above can be coupled to any 
classical equation of state. To demonstrate the effect of the fluctuation 
terms on the representation of thermodynamic properties, we have used a 
rather simple basic equation, namely, a Carnahan-Starling repulsion [ 10] 
and a van der Waals attraction term [11 ], combined with the Kreglewski 
temperature dependence ~(T)  [ 12, 13]. 

The complete equation of state is listed below. The coefficients F,k are 
defined according to Eq. (22) to simplify the program. Because they are 
independent of ,-" and 7", they have to be calculated only once, at the 
beginning of a program. 

Table 1. The Parameters of Eq. (19), Determined for COz 
in the Range 0~< ¢ ~< 1.4 

i . ' l  i 

I -0.450380736929359 
2 1.44851592280812 
3 6.65311221101693 
4 - 3.00132583637774 
5 --28.7833837850716 
6 19.99268347760946 
7 46.2213250355894 
8 -60.9581774885587 
9 16.57810592282334 

10 2.91103151685535 

~40 15 2-6 
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( P ) = - ~  ¢+  (1-¼¢)3J .;=o 
n 

Z 

a~P(T) ~2 a~(T) a2 
b2 s b2 

F ; , =  cs (2k+j ) !  
fi+2* j! k! 2* 

0, i=0, 1 
f c s =  3(i_1)+(i_1)2 

4i_ ] , i>~2 

( ) a(~, T )=exp  - ~ f o+ . f ,Y+ A i y  i+t 
i = 1  

B~ 

¢c 
f ,  = .)Co Be 

~., 

1 [T¢ 1) 
~ ( T ) =  1 +.~r ~--T- 

{ [8 +21¢],  A P ~ T < I  0 ,o 

n_~ ~ b 
[10+28~] ,  Ap---~< 10 ,4 

(22) 

The number of terms in the summation, n ~_, is not kept constant but made 
density dependent, using an empirical relationship, n~.(~). This speeds up 
the calculations at the gas side and guarantees convergence at high 
densities. The brackets in n~.(~) denote the largest integer below the real 
argument value; Ap is the absolute desired pressure inaccuracy, n,  is the 
number of parameters A;, which is 10 for the parameters listed in Table I: 

a = attraction parameter, substance dependent 

b =covolume, substance dependent 

~,. = reduced critical density, substance dependent (value depending on Zc) 

ac = value of a at the critical point, substance dependent (value depending 
on Zc) 
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Be = 

BT= 

Ai= 

temperature dependence parameter of the attraction, substance 
dependent 

density dependence parameter of the fluctuation distribution width, 
substance dependent 

temperature dependence parameter of the fluctuation distribution 
width, substance dependent 

polynomial coefficients of the density dependence of the fluctuation 
distribution width, universal for substances within a certain Z~ 
interval. 

6. CALCULATIONS 

6.1. Data Reduction 

Calculation of the parameters of Eq. (22) requires a two-step data 
reduction. In the first step, the parameters of the basic equation, a and h, 
as well as the value of the fluctuation measure, a~, have to be fitted to the 
critical data of pressure, density, and temperature by means of the critical 
conditions. 

t'°-'P/ ~ ] r  \~ -5 )  T = O, p(¢~, 7"c)- pC = 0 (23) 

It is recommended to use reduced parameters 7"~ and ~ instead of a and b. 

b ~ = 8 b R  T< = Vm~,¢, a (24) 
L 

Because it is possible to describe the critical point of every substance 
exactly, the values of 7"¢, ¢¢, and ac depend on the critical compressibility 
factor Zc, and it is possible to represent these properties by polynomials in 
Z~. This makes it possible to calculate the critical parameters directly from 
Z¢ via the polynomials without any fit. The coefficients of these polyno- 
mials are listed in Table 1I. Table III contains the experimental critical data 
used in this work, and Table IV contains the resulting values of ~c and ac. 

The second step is the calculation of the parameters of Eq. (22), which 
describe the density and temperature dependence of a. The parameter Be is 
fitted to the critical isotherm. In Fig. 3 the effect of the B~ variation is 
shown. B r  and f r ,  which represent the temperature dependence of the 
attraction in the basic equation, have to be fitted simultaneously to the 
vapor pressure curve. The parameters of the calculated substances are listed 
in Table V. 
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Table II. Polynomial Coefficients for Calculation of the Critical Parameters 
from the Critical Compressibility Factor [ )'(Z~I = d~ + d,Z¢ + d~Z ~ + daZ ~ + . . .  J 

in the Range 0.21 ~< Z,  ~<0.30 

Y(Z , )  

4,(Z¢ ) 7",1 Z ,  ) a,.( Z~. ) 

0.5161021349438131 
0.01878710569107966 

-0.01028961440626288 
0.02057919382591271 

-0.04188957246634467 

2.47644923389038 
1.13135709380211 
0.172285498944218 
3.62817764202945 

- 6.36694271368859 
8.66549119997775 

1.95650074626909 
-47 .824968433112 
592.314385(X)71386 

-4113.57177545814 
17142.47144279727 

-42952.6885993735 
59950.27507260358 

- 36050.7956382499 

Table I!1. Critical Data of the Purc Substances 

7, p,. I",,, 
Substance (K) (bar) (cm ~.mol i) Z ,  

Argon 150.718 48.6647 74.53 0.28942 
Fluorine 144.121 51.724 66.55 0.28725 
Methane 190.498 45.949 98.55 0.28589 
Propane 369.85 42.4709 201.82 0.27873 
Carbon dioxide 304.21 73.825 94.43 0.27561 

Table IV. Critical Values of the Reduced Density 
and the Fluctuation Distribution Measure a 

Substance ¢, a ,  

Argon 0.52088277 0.16125848 
Fluorine 0.52085228 0.16359201 
Methane 0.52083332 0.16501701 
Propane 0.52073212 0.17230781 
Carbon dioxide 0.52068764 0.17535879 
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Fig. 3. The effect of variation of the parameter  B. la) on the critical isotherm and (b} on the 
fluctuation distribution function. [ ...... ) B, = 1.0 ICO..): ( . . . .  ) B~ =0.8:  [ . . . . . .  ) B: = 1.3; 
I - - )  B~ =0.93 (Ar). 

It appears that B~ and Br  are close to I for all substances studied in 
this work, with the exception of fluorine. In this case, one might suspect 
that the quality of the experimental data used for the data reduction was 
not as good as for the other fluids. The critical density ~. is almost a 
constant for all fluids studied here, whereas B: and a~. seem to increase 
slightly with nonsphericity. 

6.2. Prediction 

With the known parameters of Eq.(22) the ppT surface was 
calculated. The two-phase region was determined by numerical solution of 
the Maxwell criterion. 

In Figs. 4-8 we compare experimental values with calculated results 
from the full equation of state given by Eq. (22J as well as from the basic 

Table V. Parameters of the Complete Equation of State for Pure Fluids 

a h 

Substance (dm~'-mol ~.bar)  (dm~.mol  ~) B~ B~ .I) 

Argon 1.3517058815 0.03882163932 0.93 1.0 53.651 
Fluorine 1.1556242554 0.03466109548 1.0 0.5 18.016 
Methane 2.2639369929 0.05132812380 0.9 0.9 20.000 
Propane 9.0399646569 0.10509225471 1.0 1.0 7,440 
Carbon  dioxide 3.4855201195 0.04916785707 1.0 1.0 5,727 
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equation of state, which is obtained from Eq. (22) by setting a = 0 .  The 
basic equation is not capable of representing all three critical coordinates 
Pc, T¢, and Vm~. We chose the critical pressure and volume to calculate a 
and h, calculated the (classical) critical temperature from these parameters, 
and then rescaled the temperature with the factor Tc.c,JT~ for the graphic 
presentation. The parameters for the basic equation of state are given in 
Table VI. 

In all cases, the CMFA equation of state leads to superior results in 
the critical region. The plots of the orthobaric densities vs pressure always 
show a significant flattening at the top for real substances, which can be 
reproduced by classical equations of state only if a disproportional number 

i • i - i • i ' i • 
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20 

10 ' ' " ' " ' " ' ' ' ' 
0 .2  0 4  0 6  0 .8  1 
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10 ' ' ' ' ' ' . . . . . .  
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t'-." 2 8 0  

270  

2 6 0  
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o • 

• i , i . i 

0.3  0 4  0 .5  0 .6  0 .7  

Fig. 4. The coexistence curves, the vapor pressure curve, and some near-critical isotherms of 
CO,  (at 302, 303, 304, 304.21, 305, 306, 308, and 31OK). Experimental data [16]:  ( ) 
calculated from Eq. (22); ( . . . .  ) calculated with the basic equation (o = 0). 
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5. 
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• i - i • i • i • i 

i 
0.2 0.4 0.6 0.8 1 

4O 

20 
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-20 
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Fig. 5. The coexistence curves, the vapor pressure curve, and some near-critical isotherms of 
fluorine {at 130. 135, 140, 145, 146, 148, 150, 155, and 160K). Experimental data [17]: 
( ) calculated from Eq. (22); ( . . . .  ) calculated with the basic equation (a =0). 

Table Vl. Parameters of the Basic Equation of State for Pure Fluids 

a b T~.~.=~ 
Substance (dm6.mol-J  .bar) (dm~ .mol t) (K) f r  

Argon 1.04139 0.0388879 121.527 53.651 
Fluorine 0.88252 0.0347242 115.337 18.016 
Methane 1.71921 0.0514210 151.726 20.000 
Propane 6.66436 0.1053050 287.199 7.440 
Carbon dioxide 2.53607 0.0492713 233.583 5.727 



276 Kraska and Deiters 

of adjustable parameters is used. The new equation of state leads to a good 
agreement with experimental data with few substance-specific parameters 
only. As mentioned before, the polynomial for a is a universal function for 
the molecules considered in this work. 

7. DISCUSSION 

As shown in the last section. Eq. (22) is able to predict phase behavior 
in the critical region as well as in the classical region. This is remarkable, 
because the equation of state is an analytical one. To understand the source 
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Fig. 6. The coexistence curves, the vapor pressure curve, and some near-critical isotherms of 
propane (at 363.15, 365.15, 367.15, 368.15, 369.15, 369.85, 370.15, and  373.15 K). Experimen- 
tal data [ 18, 19]: ( ) calculated from Eq. (22); ( . . . .  ) calculated with the basic equation 
(a =0) .  
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of this behavior, it is necessary to investigate the exponent of the calculated 
critical isotherm. The exponent 6 and the critical amplitude k¢ of the power 
law given by Eq. (18) can be obtained with the following equations: 

6(?,)=lnlP(g')- P~ /ln (25) 

I,~(~)= P(:~ P~ /IJ:,,'~'~' (26) 

The results are plotted in Fig. 9 as the dependence of the distance from 
the critical point. The dotted vertical line marks the critical density. In the 
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Fig. 7. The coexistence curves, the vapor pressure curve, and some near-critical isotherms of 
argon (at 150, 150.718, 151, 152, and  153 K). Experimental data [20, 21]: ( )calculated 
from Eq. (22); [ . . . .  ) calculated with the basic equation (a = 0). 
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classical region, the value of 6 increases when the distance to the critical 
point decreases. In the near-critical region the slope changes its sign, and 

is forced to the classical value three. Because the critical isotherm is very 
flat in the vicinity of the critical point, the high value of the slope of 
6 = 6(3) has little effect on the pressure values. The reason is a correspond-  
ing m a x i m u m  of the critical ampl i tude at ~c. The interaction of ~ and k~ 
is responsible for the good reproduct ion of the experimental  data  in the 
near critical region. The more  coefficients are used in the fit of Eq. (19), 
the nearer  the domain  of nonclassical values of  6 can be moved  toward the 
critical point, though the classical value at the critical point cannot  be 
avoided. 

An analogous  investigation of the binodal line leads to the same results. 
In Fig. l0 the values of l/fl and the corresponding critical ampl i tude are 
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Fig. 9. Behavior of the critical exponent 6 along the critical isotherm, calculated from 
Eq. (22). (a)Critical exponent 6; (b) associated critical amplitude of the power law (18). 

plotted, l/fl runs through a sharp  min imum with the classical value. If one 
ext rapola ted  the functions 6(~) and l/fl(~) over  (c without  considering the 
min imum,  these functions would pass through the nonclassical value at ~c. 

Also, the weakly divergent behavior  of the isochoric heat capacity Cv 
at the critical point  is not reproduced correctly by our  approach.  This is 
due part ly to the fact that  the nonclassical behavior  of  Cv is apparent  at 
very small distances from the critical point only, where the C M F A  
approx imat ion  is already returning to its classical limiting value. Further-  
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Fig. 10. Behavior of the critical exponent fl along the phase boundary, calculated from 
Eq. (22). {a) Reciprocal value of fl; (b) associated critical amplitude of the binodal power law. 
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more, the basic equation of state used in this work is too simple; to 
describe the behavior of Cv correctly, an improved classical equation must 
be used which exhibits a maximum of Cv at the critical point. 

The reason the C M F A  equation does not converge exactly to the 
nonclassical value of the critical exponents at the critical point is the use of 
equal-sized cells. The size of the cells is connected to the measure of the 
fluctuation a. Because the cells have equal sizes, we have an averaging of 
fluctuation. The nonclassical behavior, howevcr, is caused by diverging fluc- 
tuations, which cannot  be described accurately with a model using finite and 
uniform cells. In this work, we replaced the mean field approximat ion 
by a mean fluctuation approximation.  The mean fluctuation approximat ion 
( C M F A  in Section 2) represents the classical fluctuations in the fluid. 

The other restriction of our  model is that fluctuations of all length 
scales are not coupled. This property makes our  model equivalent to the 
Gaussian model [14] ,  which has been shown to yield classical critical 
exponents in the immediate vicinity of the critical point [15] .  

To describe the nonanalytical  behavior, the mean fluctuation 
approximat ion has to change to a multiple fluctuation approximation.  This 
can be done by introducing a distribution of cell sizes. If it is possible to 
consider infinite cell sizes, the nonclassical values will be reached at the 
critical point. Hence the C M F A  is the first step in the development of the 
new kind of crossover. Nevertheless, it is useful for describing experimental 
data of real substances as shown in Section 6. We intend to generalize this 
model to a model using a range of cell sizes which will yield the complete 
crossover. 
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